
Two papers:

- Reasoning with Language Model is Planning
with World Model
- RL Planning and AI Planning: A Primer and
Survey (Preliminary Report)

1

Reasoning with Language Model
is Planning with World Model

Radowan Mahmud Redoy (snf4za)
Rishov Paul (vst2hb)

2

Introduction to Problem

Creating action plans to move a block to a target state

success rate 1% 78% Success rate

LLMs have remarkable reasoning capabilities with techniques such as
• CoT (chain-of-thought)

• Least-to-most prompting

3

Introduction to Problem

Exploring various
alternative courses of

actions

Assessing the likely
outcomes by rolling out

possible future scenarios

Iteratively refining the
plan based on the

assessment

3/25/2025 4

To make an action plan towards a goal, planning involves following process

LLMs struggle with complex tasks that require multiple steps of Math, Logical or

Commonsense reasoning

Introduction to Problem

Lack of an internal world knowledge to simulate the state of the world

Absence of a reward mechanism to assess and guide the reasoning towards the
desired state

Incapability of balancing exploration vs. exploitation to efficiently explore vast
reasoning space.

key limitations of the current reasoning with LLMs,

5

Reasoning
via Planning
(RAP)

AUGMENTS THE LLM WITH A
WORLD MODEL

REASONS WITH PRINCIPLED
PLANNING

PRODUCE HIGH-REWARD
REASONING TRACES AFTER

EFFICIENT EXPLORATION

6

RAP (Approach)

Build the world model by repurposing the LLM with prompting

Introduce the rewards for assessing each state during reasoning

Guided by the world model and rewards, plan with Monte Carlo Tree
Search and explore reasoning space to find optimal reasoning traces

Finally, when multiple promising reasoning traces are acquired during
planning, introduce an aggregation method

7

World Model

A world model predicts the next state of the reasoning after applying an action to the current state

World State Action

Blocks World Configuration of blocks Moving a block (e.g., "pickup the
orange block")

Math Reasoning Values of intermediate variables Subquestion that derives new
values

Logical Reasoning Fact being focused on Choosing a rule for the next
deduction

Example: NVIDIA Cosmos World Foundation Models A family of pretrained multimodal models
that developers can use out-of-the-box for world generation and reasoning,

8

Language Model as
World Model

With the definition of state and action, the
reasoning process can be described as a Markov
decision process (MDP)

• Taking s0, the LLM generates an action space by
sampling from its generative distribution at ∼
p(a|st, c), where c is a proper prompt .

• Once an action is chosen, the world model then
predicts the next state st+1 of the reasoning.

9

Action plan generation prompt

10

Plan Generation: Task setup

• Environment: Blocksworld benchmark
(Valmeekam et al., 2022)
• Goal: Rearrange blocks into target

stacks.

• State Definition:
• Current orientation of blocks.

• Action Definition:
• 4 verbs: STACK, UNSTACK, PUT,

PICKUP + objects.
• Valid actions generated based on

current state & domain rules.

11

Plan Generation: Task Setup

• State Transition:
• LLM predicts state changes after each action.
• State updated by adding/removing block conditions that are no longer true.

• Termination:
• Ends when goal conditions met or depth limit reached.

• Rewards:
• r1: LLM log-probability of action (intuitive, near-goal).
• r2: Heuristic reward based on goal conditions met.
• Super high reward when all goal conditions are satisfied.

12

Next state prediction prompt

13

Traditional
Method vs

RAP

14

Case Study: Comparison of COT and RAP

15

Planning with Monte Carlo Tree Search

Once equipped with the world model and rewards LLMs can
reason with any planning algorithms.

Monte Carlo Tree Search (MCTS)
A powerful planning algorithm that strategically explores
the space of reasoning trees and strikes a proper
balance between exploration and exploitation to find
high-reward reasoning traces efficiently.

16

Planning with Monte Carlo Tree Search

17

Reward Design

• Log probability of the action as a reward
• Reflects the “in stinct” of LLMs as an agent

Likelihood of the action

• Draw multiple sample answers from the world model
• Use the proportion of the most frequent answer as the

confidence.

Confidence of the state

• It's beneficial to allow the LLM to criticize itself with the
question

• The reward evaluates LLM’s own estimation of the
correctness of reasoning.

Self-evaluation by the LLM

• RAP also allows us to flexibly plugin other task-specific
heuristics into the reward function.

Task-specific heuristics

18

Experiments and Results

Demonstrate the flexibility and effectiveness of our RAP framework by applying it to a wide range of

problems

19

Results of Plan Generation

20

Math Reasoning: Task setup

• Dataset:
• GSM8k - consists of grade school math word problems

• Input: Description + Final Question

• RAP decompose the final question into a sequence of
smaller sub-questions

• State: Tracks the values of intermediate variables

• Action: incremental sub-question proposal about a
unknown intermediate variable

• World Model Response: Answers sub-question & updates
state with new intermediate value

• RAP reviews updated state to inform next sub-question

21

Math Reasoning: reward process

• Reward (rt):
• Combines LLM self-evaluation & state confidence.
• rt = rₜ,₁^α * rₜ,₂^(1-α)
• encourages more relevant and useful sub-questions

• Q-Value: Considers future steps reward averages to optimize reasoning path

22

RAP-Aggregation

• For problems, such as math
reasoning where only the final
answer is required, RAP could
produce multiple traces and
answers from different MCTS
iterations, which will be aggregated
to produce the final answer.

Note that problems like plan generation or logical
inference require a complete reasoning trace as

output; thus, RAP Aggregation will not be applied.

23

Math Reasoning: Results

24

Logical Reasoning with RAP: Task Setup

• Dataset: PrOntoQA (Saparov & He, 2022)

• Objective:
• Verify if a hypothesis fact is true or false.
• Provide a step-by-step proof supporting the answer.

• Problem Setup:
• Input: Set of facts + logical rules.
• Output: Final answer (True/False) + logical proof.

• RAP Framework Setup:
• State: Current fact in focus
• Action: Select a rule from the fact set.

25

Logical Reasoning: Process and Reward

Reasoning Process:
World Model: Executes one-hop
reasoning (apply selected rule).

Produces new fact → updates
state.

Reward Design:
Self-Evaluation: LLM scores the
quality of reasoning steps.
Few-shot examples provided to
LLM for better self-assessment.
Q-value Update:
• Uses average rewards of future

steps (similar to GSM8k reward
formulation).

Outcome:
Supports multi-step reasoning with

detailed proof generation.

26

Logical Reasoning: Results

27

RAP (Overview)

Acquire the world
model by repurposing

the LLM itself with
appropriate prompts

LLM strategically builds
a reasoning tree by

iteratively considering
the most promising
reasoning steps and

using the world model
to look ahead for future

outcomes

The estimated future
rewards are

backpropagated to
update the LLM’s
beliefs about the

current reasoning steps

RAP enables LLMs to strategically plan a coherent reasoning trace for solving a wide
range of reasoning tasks.

28

Conclusion
• RAP bridges the gap between human-like planning and LLM reasoning

— setting a new benchmark for intelligent problem-solving

• Integrates Monte Carlo Tree Search (MCTS) to balance exploration
and exploitation.

• Outperforms several CoT-based reasoning methods.

• In some cases, surpasses even GPT-4 on challenging reasoning tasks

29

RL Planning and AI Planning: A
Primer and Survey (Preliminary

Report)
Frist Half: Swakshar Deb (swd9tc)

30

What is Planning?
Planning is a sequence of actions (a1, a2, …, an) that lead us to the desired goal. .

R. Epstein, C. E. Kirshnit, R. P. Lanza & L. C. Rubin, Insight’ in the pigeon: antecedents and determinants of an intelligent performance, Nature, 1984
31

https://www.nature.com/articles/308061a0
https://www.nature.com/articles/308061a0
https://www.nature.com/articles/308061a0
https://www.nature.com/articles/308061a0

Why Planning is Important?

1) To handle complex task

2) Can provide fine grained

motor skills

Peng et al., Learning Agile Robotic Locomotion Skills

by Imitating Animals, 2020

Wu et al., Discrete Policy: Learning Disentangled Action

 Space for Multi-Task Robotic Manipulation, 2025

3) Planning should give the optimal path

32

Classical Planning vs Reinforcement Learning (RL)

Monte Carlo Tree Search

1) Classical Planning:

 tree search-based planning

e.g., A* search, Greedy best

first search, Monte Carlo search etc

2) Reinforcement Learning based Planning

33

3) AI Planner (logic based)

Planning and Representations: State

Shah et. al., Rapid Exploration for Open-World Navigation with Latent Goal Models, CoRL, 2021

• State refers to the current situation or configuration that an agent perceives in its environment.

34

(2) RL Planning: Trajectory Transformer

Step 1: Trajectory Modelling

Step 2: Planning

initial trajectory:

tokenized trajectory:

every dimension of every state si, action ai, reward ri is a token

Janner et al., Offline Reinforcement Learning as One Big Sequence Modeling Problem, Neurips, 2021

Trajectory transformer: fit transformer to high probability trajectory that has higher reward.

35

Learn the high probability trajectory

Demonstration in the Simulated Environment

36

RL Planning: QT-OPT

Kalashnikov et al., QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation, 2018

This slide is taken from https://www.youtube.com/watch?v=5Tdndu275AY&t=1202s

37

https://www.youtube.com/watch?v=5Tdndu275AY&t=1202s

Does it works?

38

ViNG: Learning Open-World Navigation with Visual Goals

Dhruv Shah, Benjamin Eysenbach, Gregory Kahn, Nicholas Rhinehart, Sergey Levine, ViNG: Learning Open-World Navigation with Visual Goals, Neurips, 2021 39

Real World demonstration of ViNG

40

COG: Connecting New Skills to Past Experience with Offline
Reinforcement Learning

RL policies typically do no generalize well to

initial condition that is not seen during training

Training time New initial condition

Can we use previously collected, unlabeled data
to extend the learned skill?

Singh et al., COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning, CoRL, 2020 41

Problem Setup

Sparse 0, 1 reward.

Learn Q function in the

training dataset
.

Reward = 0

Propagate the learned

Q values to prior data

.

.

42

Real World Evaluation of CoG

Real World Evaluation

43

(3) AI Planning, logic based

Example of logic based state representation: used for multiple objects

44

AP Representations: State

• Object: Constant symbols representing entities (e.g., dog, bedroom).

• Predicate: A logical statement that represent relationships or properties between objects.

• Grounding: Assigning objects to predicate arguments to form propositions.

• A state is a set of propositions representing all predicates.

in(dog, bedroom) → Means the dog is in the bedroom

State = {in(dog, bedroom), hungry(dog), brown(dog), dirty(bedroom), likes(dog, bedroom), can_make(dog, sandwich), in(bed, bedroom)}

45

AP Representations: Action Schema

• A planning action is represented as a tuple:

 action schema =⟨arg(a), pre(a), add(a), del(a)⟩

• Components:
•arg(a): Arguments for the action.

•pre(a): Preconditions that must be true for execution.

•add(a): Positive effects (predicates that become true after executing the action).

•del(a): Negative effects (predicates that become false after executing the action).

46

Continue…
• Syntax: action schema = ⟨arg(a), pre(a), add(a), del(a)⟩

• Example:

Action schema = {move(dog, bedroom, kitchen), in(dog, bedroom), in(dog, kitchen), in(dog, bedroom)}

Arg(a) Pre(a) Add(a) Del(a)

47

Benefits of Structure: Attention

• AP represents states as databases of facts, enabling queries for transitions and goal determination

• Actions only affect relevant facts, leaving irrelevant details unchanged.

• Example:

State = {in(dog, bedroom), hungry(dog), brown(dog), dirty(bedroom), likes(dog, bedroom), can_make(dog, sandwich), in(bed, bedroom)}

Action: Move(dog, bedroom, kitchen)

New state ={in(dog, kitchen),hungry(dog),brown(dog),dirty(bedroom),likes(dog, bedroom),can_make(dog, sandwich),in(bed, bedroom)}

48

Benefits of Structure: Automation

• AP can be viewed as a declarative programming paradigm where problems are specified as a program in a
planning language

• Do not have to write a solver for a problem and only a model of the problem.

• Examples: A* search, Greedy Best First Search, Monte Carlo Tree Search.

49

Planning Extensions: Uncertainty

• Probabilistic planning: Allowing for probabilistic
transitions.

• Nondeterministic planning: Probabilities for
transitions are not given or unknown.

• Conformant planning: Computing plans in
partially observable environments

50

Planning Extensions: Time and Numerics

• Numeric Planning introduces functions and numeric expressions, allowing the representation of numeric
state variables capturing e.g. resources, physical properties, and plan metrics.

HasBattery(robot_A) = 80% HasBattery(robot_A) = True/False

Predicate
Numeric function

Temporal Planning extends the defnition of actions and plans to allow for durative and concurrent actions, as well

as deadlines and temporal synchronisation.
.

51

Solving Planning Task: Heuristic Functions

• Functions that estimate the cost from a given state
to the goal.

• Helps guide search algorithms like A* and Greedy
Best-First Search.

• Examples: Manhattan Distance, Euclidean
distance, Number of misplaced tiles (used in
puzzles)

52

Solving Planning Task: A* Algorithm

• Select the node with lowest

 f(n) = g(n) + h(n)

Where, g(n) is cost of node n from the start and h(n) is
the heuristic value of node n

g(C)

53

Problem Decomposition: Subgoals

• Subgoals as Decomposition: They break down complex tasks into intermediate goals

• Landmarking in Planning: Represent essential actions or state required for the solution

Fig: ‘s’ is the start state, ‘g’ is the goal state and . is the subgoals

54

Problem Decomposition: Factored Planning

• Decomposes large planning problems into smaller,
independent subproblems.

• Each subproblem is solved separately and then
combined for the final solution.

• Allows parallel solving of independent factors by
multiple robots.

55

Problem Decomposition: Symmetries

• A form of problem decomposition that involves collapsing equivalent subproblems to generate an easier task
to solve

• Improves efficiency by avoiding duplicate exploration of symmetrical paths.

State B = {state 3, state 4}

State A = {state 1, state 2}

56

Second Half of the Paper AI Planning: A
Primer and Survey(Preliminary Report)

Presented By : Md. Mahir Ashhab (ftm2nu)

57

Generalization in Planning

What is Generalization?

• The ability of AI planners to solve unseen problems by

leveraging prior knowledge.

• planning approaches define task-specific rules that transfer

across domains.

• Different from RL, where generalization is often tied to reward

learning,

58

Formal Definition of Generalization in
Planning

59

Problem Tuple: ⟨D, T_train,

T_test⟩
D: A domain

T_train: Training tasks

T_test: Unseen test tasks

Learning involves constructing

Generalized Planning

Knowledge (GPK) for efficiently

solving T_test.

Learning Structure and from Structure

• Modern approaches integrate learning methods to automatically
infer structure.

• Different from classical AI planning, which relies on explicitly defined
state-transition models,

• Two key perspectives:
A. Learning structured representations from unstructured data (e.g., learning

symbolic planning models from raw state-action traces).
B. Leveraging structured planning knowledge to enhance learning efficiency

(e.g., using heuristic functions to guide learning).

• Key Question:
• How can AI planning methods be extended to handle complex, real-world tasks

where models are unknown or changing?

60

A: Learning Planning Models - STRUCTURE

Goal: Convert raw state-action sequences into structured planning models (PDDL,

RDDL).

PDDL :

61

Types of Model Learning Approaches

1. From Passive state-action traces

•Extracting action models from state transitions

•Example: LOCM2, ARMS for deterministic planning

2. Learning from Passive Images/Videos traces
•Convert raw observations into planning models
•Example: Using GNNs and Transformer-based encoders

3. Active Model Learning (Exploratory Learning)

•Incrementally refining models based on agent interactions

•Example: Incremental Learning Model (ILM)

62

Neuro-Symbolic Learning of Lifted Action
Models from Visual Traces

64

Neuro-Symbolic Learning of Lifted Action
Models from Visual Traces

65

Neuro-Symbolic Learning of Lifted Action
Models from Visual Traces

66

Asking the Right Questions: Learning Interpretable
Action Models Through Query Answering

67

Asking the Right Questions: Learning Interpretable
Action Models Through Query Answering

68

B: Learning for Planning (L4P)

L4P focuses on enhancing AI planners using machine learning techniques.

Key Techniques:

1. Graph Learning for Heuristic Search

•Using Graph Neural Networks (GNNs) to learn heuristic functions.
•Example: Toyer et al. (2018) – ASNets

2. Automatically Generating Reward Functions

•Reward function learning via planning abstractions.

•Example: RL approaches integrating symbolic knowledge.

69

Low cost Reasoning: On the Self-Verification Limitations
of Large Language Models on Reasoning and Planning
Tasks

70

Automatic reward functions and labels:
ASNets

71

Automatically Generate supervised Training Labels from
Training Tasks with Domain Independent Planners

72

Generalized Planning (GP)

Objective
• Learn reusable policies for multiple planning tasks.

Challenges:
• Scalability to large state spaces
• Verifying correctness of learned policies

Solution Approaches:
1. Program Synthesis-Based GP
2. Graph-Based GP

73

Directed Search for Generalized Plans Using
Classical Planners

74

Generalized Q-Function in RL problems

75

Key Takeaways from the Survey

•AI Planning is evolving to incorporate learning-based

techniques.

•Structure reduces complexity in decision-making.

•Bridging AI Planning and RL is crucial for next-gen AI

applications.

76

Challenges and Future Directions

Scalability
•How to handle large, real-world dynamic environments?

Generalization
• How to efficiently transfer learned models?

Integration with Generative AI
•How can foundation models help automate planning knowledge?

77

Final Thoughts and Open Questions

•AI Planning is bridging traditional symbolic reasoning and

deep learning.

•Learning-based planning is reshaping automation, robotics,

and real-world AI.

Open Discussion Question:
•How can we create AI planners that learn and adapt like humans?

78

Thank you

79

	Slide 1: Two papers: - Reasoning with Language Model is Planning with World Model - RL Planning and AI Planning: A Primer and Survey (Preliminary Report)
	Slide 2: Reasoning with Language Model is Planning with World Model
	Slide 3: Introduction to Problem
	Slide 4: Introduction to Problem
	Slide 5: Introduction to Problem
	Slide 6: Reasoning via Planning (RAP)
	Slide 7: RAP (Approach)
	Slide 8: World Model
	Slide 9: Language Model as World Model
	Slide 10: Action plan generation prompt
	Slide 11: Plan Generation: Task setup
	Slide 12: Plan Generation: Task Setup
	Slide 13: Next state prediction prompt
	Slide 14: Traditional Method vs RAP
	Slide 15: Case Study: Comparison of COT and RAP
	Slide 16: Planning with Monte Carlo Tree Search
	Slide 17: Planning with Monte Carlo Tree Search
	Slide 18: Reward Design
	Slide 19: Experiments and Results
	Slide 20: Results of Plan Generation
	Slide 21: Math Reasoning: Task setup
	Slide 22: Math Reasoning: reward process
	Slide 23: RAP-Aggregation
	Slide 24: Math Reasoning: Results
	Slide 25: Logical Reasoning with RAP: Task Setup
	Slide 26: Logical Reasoning: Process and Reward
	Slide 27: Logical Reasoning: Results
	Slide 28: RAP (Overview)
	Slide 29: Conclusion
	Slide 30: RL Planning and AI Planning: A Primer and Survey (Preliminary Report)
	Slide 31: What is Planning?
	Slide 32: Why Planning is Important?
	Slide 33: Classical Planning vs Reinforcement Learning (RL)
	Slide 34: Planning and Representations: State
	Slide 35: (2) RL Planning: Trajectory Transformer
	Slide 36: Demonstration in the Simulated Environment
	Slide 37: RL Planning: QT-OPT
	Slide 38: Does it works?
	Slide 39: ViNG: Learning Open-World Navigation with Visual Goals
	Slide 40: Real World demonstration of ViNG
	Slide 41: COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning
	Slide 42: Problem Setup
	Slide 43: Real World Evaluation of CoG
	Slide 44: (3) AI Planning, logic based
	Slide 45: AP Representations: State
	Slide 46: AP Representations: Action Schema
	Slide 47: Continue…
	Slide 48: Benefits of Structure: Attention
	Slide 49: Benefits of Structure: Automation
	Slide 50: Planning Extensions: Uncertainty
	Slide 51: Planning Extensions: Time and Numerics
	Slide 52: Solving Planning Task: Heuristic Functions
	Slide 53: Solving Planning Task: A* Algorithm
	Slide 54: Problem Decomposition: Subgoals
	Slide 55: Problem Decomposition: Factored Planning
	Slide 56: Problem Decomposition: Symmetries
	Slide 57: Second Half of the Paper AI Planning: A Primer and Survey(Preliminary Report)
	Slide 58: Generalization in Planning
	Slide 59: Formal Definition of Generalization in Planning
	Slide 60: Learning Structure and from Structure
	Slide 61: A: Learning Planning Models - STRUCTURE
	Slide 62: Types of Model Learning Approaches
	Slide 64: Neuro-Symbolic Learning of Lifted Action Models from Visual Traces
	Slide 65: Neuro-Symbolic Learning of Lifted Action Models from Visual Traces
	Slide 66: Neuro-Symbolic Learning of Lifted Action Models from Visual Traces
	Slide 67: Asking the Right Questions: Learning Interpretable Action Models Through Query Answering
	Slide 68: Asking the Right Questions: Learning Interpretable Action Models Through Query Answering
	Slide 69: B: Learning for Planning (L4P)
	Slide 70: Low cost Reasoning: On the Self-Verification Limitations of Large Language Models on Reasoning and Planning Tasks
	Slide 71: Automatic reward functions and labels: ASNets
	Slide 72: Automatically Generate supervised Training Labels from Training Tasks with Domain Independent Planners
	Slide 73: Generalized Planning (GP)
	Slide 74: Directed Search for Generalized Plans Using Classical Planners
	Slide 75: Generalized Q-Function in RL problems
	Slide 76: Key Takeaways from the Survey
	Slide 77: Challenges and Future Directions
	Slide 78: Final Thoughts and Open Questions
	Slide 79: Thank you

