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Introduction to Problem

LLMs have remarkable reasoning capabilities with techniques such as
e Col (chain-of-thought)

* Least-to-most prompting

Creating action plans to move a block to a target state

@
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Introduction to Problem

To make an action plan towards a goal, planning involves following process

o =
M V —
o =
o =
Exploring various Assessing the likely Iteratively refining the
alternative courses of outcomes by rolling out plan based on the
actions possible future scenarios assessment

LLMs struggle with complex tasks that require multiple steps of Math, Logical or
Commonsense reasoning
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Introduction to Problem
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key limitations of the current reasoning with LLMs,

Lack of an internal world knowledge to simulate the state of the world

Absence of a reward mechanism to assess and guide the reasoning towards the
desired state

Incapability of balancing exploration vs. exploitation to efficiently explore vast
reasoning space.
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RAP (Approach)

Build the world model by repurposing the LLM with prompting ‘

‘ Introduce the rewards for assessing each state during reasoning ‘

Guided by the world model and rewards, plan with Monte Carlo Tree
Search and explore reasoning space to find optimal reasoning traces

Finally, when multiple promising reasoning traces are acquired during
planning, introduce an aggregation method




World Model

A world model predicts the next state of the reasoning after applying an action to the current state

T S

Blocks World Configuration of blocks Moving a block (e.g., "pickup the
orange block")

Math Reasoning Values of intermediate variables Subquestion that derives new
values

Logical Reasoning Fact being focused on Choosing a rule for the next
deduction

Example: NVIDIA Cosmos World Foundation Models A family of pretrained multimodal models
that developers can use out-of-the-box for world generation and reasoning,



Language Model as
World Model

With the definition of state and action, the
reasoning process can be described as a Markov
decision process (MDP)

* Taking sO, the LLM generates an action space by
sampling from its generative distribution at ~
p(alst, c), where c is a proper prompt.

* Once an action is chosen, the world model then
predicts the next state st+1 of the reasoning.
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Stack it
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Action plan generation prompt

stack the orange block on top of the
red block
[PLAN END]

[STATEMENT]

As initial conditions I have that, the
orange block is clear, the yellow
block is clear, the hand is empty,
the blue block is on top of the red
block, the orange block is on top
of the blue block, the red block is
on the table and the yellow block
is on the table.

My goal is to have that the blue block
is on top of the red block and the
yellow block is on top of the
orange block.

My plan is as follows:

[PLAN]

pick up the yellow block

stack the yellow block on top of the
orange block

[PLAN END]

[STATEMENT]
As initial conditions I have that, the
red block is clear, the blue block

is clear, the orange block is
clear, the hand is empty, the blue
block is on top of the yellow
block, the red block is on the
table, the orange block is on the
table and the yellow block is on
the table.

My goal is to have that the blue block
is on top of the orange block and
the yellow block is on top of the
red block.

My plan is as follows:

[PLAN]

unstack the blue block from on top of
the yellow block

stack the blue block on top of the
orange block

pick up the yellow block

stack the yellow block on top of the
red block

[PLAN END]

[STATEMENT]

As initial conditions I have that, the
red block is clear, the blue block
is clear, the yellow block is
clear, the hand is empty, the

yellow block is on top of the
orange block, the red block is on
the table, the blue block is on the
table and the orange block is on
the table.

My goal is to have that the orange
block is on top of the blue block
and the yellow block is on top of
the red block.

My plan is as follows:

[PLAN]

unstack the yellow block from on top of
the orange block

stack the yellow block on top of the
red block

pick up the orange block

stack the orange block on top of the
blue block

[PLAN END]

[STATEMENT]

As initial conditions I have that,
<initial_state>

My goal is to have that <goals>.

My plan is as follows:

10
[PLAN]



Plan Generation: Task setup

e Environment: Blocksworld benchmark
(Valmeekam et al., 2022)

* Goal: Rearrange blocks into target
stacks.

e State Definition:

« Current orientation of blocks. Goal: The orange block is on the blue block, and

the yellow block is on the orange block.
* Action Definition:
* 4verbs: STACK, UNSTACK, PUT,
PICKUP + objects.

* Valid actions generated based on
current state & domain rules.

11



Plan Generation: Task Setup

e State Transition:
* LLM predicts state changes after each action.
e State updated by adding/removing block conditions that are no longer true.

* Termination:
* Ends when goal conditions met or depth limit reached.

* Rewards:
* r1: LLM log-probability of action (intuitive, near-goal).
* r2: Heuristic reward based on goal conditions met.
* Super high reward when all goal conditions are satisfied.

12



Next state prediction prompt

I am playing with a set of blocks where
I need to arrange the blocks into
stacks. Here are the actions I can
do

Pick up a block

Unstack a block from on top of another
block

Put down a block

Stack a block on top of another block

I have the following restrictions on my
actions:

I can only pick up or unstack one block
at a time.

I can only pick up or unstack a block
if my hand is empty.

I can only pick up a block if the block

is on the table and the block is
clear. A block is clear if the
block has no other blocks on top of
it and if the block is not picked
up.

I can only unstack a block from on top
of another block if the block I am
unstacking was really on top of the
other block.

I can only unstack a block from on top
of another block if the block I am
unstacking is clear. Once I pick up
or unstack a block, I am holding
the block.

I can only put down a block that I am
holding.

I can only stack a block on top of
another block if I am holding the
block being stacked.

I can only stack a block on top of
another block if the block onto
which I am stacking the block is
clear. Once I put down or stack a
block, my hand becomes empty.

After being given an initial state and
an action, give the new state after
performing the action.

[SCENARIO 1]

[STATE @] I have that, the white block
is clear, the cyan block is clear,
the brown block is clear, the hand
is empty, the white block is on top
of the purple block, the purple
block is on the table, the cyan
block is on the table and the brown
block is on the table.

[ACTION] Pick up the brown block.

[CHANGE] The hand was empty and is now
holding the brown block, the brown
block was on the table and is now
in the hand, and the brown block is
no longer clear.

[STATE 1] I have that, the white block
is clear, the cyan block is clear,
the brown block is in the hand, the
hand is holding the brown block,

the white block is on top of the
purple block, the purple block is
on the table and the cyan block is
on the table.

[SCENARIO 2]

[STATE @] I have that, the purple block
is clear, the cyan block is clear,
the white block is clear, the hand
is empty, the white block is on top
of the brown block, the purple
block is on the table, the cyan
block is on the table and the brown
block is on the table.

[ACTION] Pick up the cyan block.
[CHANGE] The hand was empty and is now
holding the cyan block, the cyan
block was on the table and is now
in the hand, and the cyan block is

no longer clear.

[STATE 1] I have that, the cyan block
is in the hand, the white block is
clear, the purple block is clear,
the hand is holding the cyan block,
the white block is on top of the
brown block, the purple block is on
the table and the brown block is on
the table.

[SCENARIO 3]
[STATE @] <state>
[ACTION] <action>

[CHANGE] 13



Traditional

Method vs
RAP
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Reasoning via Planning (RAP)
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Case Study: Comparison of COT and RAP
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unstack the orange
block from on top of the
yellow block
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stack the orange block

on top of the red block
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pick up the yellow block
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stack the yellow block
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RAP (Goal: The red block is on blue block; the orange block is on the red block)

(| have that, the red block is clear, the blue block is clear, the orange block is clear,
the hand is empty, the orange block is on top of the yellow block, the red block is
\_on the table, the blue block is on the table and the yellow block is on the table.

~

DS

Pick up the red block.

57 \S

(| have that, the blue block is clear, the orange block is clear, the red block is in the
hand, the hand is holding the red block, the orange block is on top of the yellow
block, the blue block is on the table, and the yellow block is on the table.

Stack the red block on top of the blue block.

(| have that, the orange block is clear, the red block is clear, the hand is empty, the
orange block is on top of the yellow block, the red block is on top of the blue block,
\_the blue block is on the table, and the yellow block is on the table.

SRS

Unstack the orange block from on top of the yellow block.

-

-

(I have that, the orange block is in the hand, the red block is clear, the yellow block
is clear, the hand is holding the orange block, the red block is on top of the blue
block, the blue block is on the table, and the yellow block is on the table.

Stack the orange block on top of the red block.

J

| have that, the orange block is clear, the yellow block is clear, the hand is empty,
the orange block is on top of the red block, the red block is on top of the blue

\_block, the blue block is on the table, and the yellow block is on the table.

|
B,

Figure 4. Comparing reasoning traces in Blocksworld from CoT (left) and RAP (right).
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Planning with Monte Carlo Tree Search

@ Once equipped with the world model and rewards LLMs can
reason with any planning algorithms.

Q Monte Carlo Tree Search (MCTS)

A powerful planning algorithm that strategically explores
the space of reasoning trees and strikes a proper
balance between exploration and exploitation to find
high-reward reasoning traces efficiently.

16



Planning with Monte Carlo Tree Search

i

Pickup
orange

L] ]

[ [ |

Stack it
on blue

(a) Selection
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Pickup
orange
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Stack it
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(b) Expansion
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(c) Simulation

(d) Back-propagation
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Reward Design

Likelihood of the action

e Log probability of the action as areward
» Reflects the “in stinct” of LLMs as an agent

Confidence of the state

e Draw multiple sample answers from the world model

e Use the proportion of the most frequent answer as the
confidence.

Self-evaluation by the LLM

¢ |t's beneficial to allow the LLM to criticize itself with the
question

e The reward evaluates LLM’s own estimation of the
correctness of reasoning.

Task-specific heuristics

e RAP also allows us to flexibly plugin other task-specific
heuristics into the reward function.

18




Experiments and Results

Demonstrate the flexibility and effectiveness of our RAP framework by applying it to a wide range of
problems




Results of Plan Generation

Method 2-step 4-step 6-step

CoT  0.17 0.02 0.00
CoT - pass@10  0.23 0.07 0.00
CoT (GPT-4)  0.50 0.63 0.40

RAPU®  1.00 0.86 0.26
RAPZ? 1,00 0.88 0.42

Table 1: Results on Blocksworld. RAP(1?) and RAP(2?)
refer to our method where the iteration number is set to
10 and 20, respectively. “pass@10” means 10 plans are
sampled for each test case, and the test case is regarded
as solved if at least one plan is correct. All other settings
including RAP, only evaluate a single plan.



Math Reasoning: Task setup

* Dataset:
* GSM8Kk - consists of grade school math word problems

* Input: Description + Final Question

* RAP decompose the final question into a sequence of
smaller sub-questions

e State: Tracks the values of intermediate variables

e Action: incremental sub-question proposal about a
unknown intermediate variable

 World Model Response: Answers sub-question & updates
State with new intermediate value

* RAP reviews updated state to inform next sub-question

Ho mény pages shduld shé read?

1: How many pages did
Julie read today?
(r=0.7)
Q1: How ...Today? Q1: How ... read?
A1: 24 A1: 30
\
Q2: How many pages has Julie
read till now?
(r=10.8)

Q1
Q2: How ...now?
A2: 36

!
Q1: How... today?
A1: 24

QrT: How ... tomorrow?
AT: 42

(Answer: 42) 21



Math Reasoning: reward process

 Reward (rt):
* Combines LLM self-evaluation & state confidence.
* rt=ry,"a*r,,"(1-0)
« encourages more relevant and useful sub-questions
* Q-Value: Considers future steps reward averages to optimize reasoning path

Q" (st,at) = max avg(Te,...,T1).
StyQt Tty 3S[H,ALT],SI+1

22



RAP-Aggregation

* For problems, such as math
reasoning where only the final
answer is required, RAP could
produce multiple traces and
answers from different MCTS
iterations, which will be aggregated
to produce the final answer.

Note that problems like plan generation or logical
inference require a complete reasoning trace as

output; thus, RAP Aggregation will not be applied.

How many pages should she read?

{}
Q1: How many pages did
Julie read today?
(r=0.7)
Q1: How ... Today? Qi How ... read?
A1: 24 Aa: 30

A

(Q32: How many pages has Julie
read till now?
(r=0.8)

Qi ...
Qz: How ...now?
Az 36
|
Q1: How... today?
A 24
I'JT How ... tormorrow?
AT 42

(Answer: 42)
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Math Reasoning: Results

20 /+/+~—~_-:__——-:\+
e iy Method | Accuracy (%)

45 e PO
_ / - — Chain-of-Thought 29.4
340 Gl g + sC(19) 46.8
§ St Least-to-Most 25.5
2 £ +sc0 42.5

Method

./ —e— Least-to-most (1)

30 X / —#— Chain-of-thoughts RAP 400
= ok RAP(?) 48.6
1 2 3 4 5 6 7 8 9 10 +aggr S51.6

Number of samples (iterations)

Figure 5: Results on GSM-8K, with different numbers
of sampled paths or iterations.

Table 2: Results on GSM8k. The superscripts indicat
the number of samples or iterations.
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Logical Reasoning with RAP: Task Setup

Dataset: PrOntoQA (Saparov & He, 2022)

Hypothesis: Fae is unicellular?

* Objective: —
* Verify if a hypothesis fact is true or false.
* Provide a step-by-step proof supporting the answer. s 'Si/
* Problem Setup:
* Input: Set of facts + logical rules. '
* OQOutput: Final answer (True/False) + logical proof. smivores are @ Camivores are
* RAP Framework Setup: =08
* State: Current fact in focus Fae is a mammal
* Action: Select a rule from the fact set. ;

Fae is a not unicellular

(The hypothesis is false)

25



Logical Reasoning: Process and Reward

~
Y,
Reasoning Process:

World Model: Executes one-hop
reasoning (apply selected rule).

Produces new fact > updates
state.

BEx

Reward Design:

Self-Evaluation: LLM scores the
quality of reasoning steps.

Few-shot examples provided to
LLM for better self-assessment.

Q-value Update:

e Uses average rewards of future
steps (similar to GSM8k reward
formulation).

T

Outcome:

Supports multi-step reasoning with
detailed proof generation.

26



Logical Reasoning: Results

Hypothesis: Fae is unicellular?

Fae is a feline
(5) Each feline is a
Method Pred Acc Proof Acc ‘2";":'?;‘)’5
Col 87.8 64.8 Faeis a gamivore Fae is a cat
CoT + SC 89.8 -
RAP (Ours) 94.2 78.8 mivorous ; C"?Q“fis *
Table 3: Results on ProntoQA. Fae is a mammal
|
v

Fae is a not unicellular

(The hypothesis is false)

27



'I| RAP (Overview)

= 5 =

RAP enables LLMs to strategically plan a coherent reasoning trace for solving a wide
range of reasoning tasks.




Conclusion

* RAP bridges the gap between human-like planning and LLM reasoning
— setting a new benchmark for intelligent problem-solving

* Integrates Monte Carlo Tree Search (MCTS) to balance exploration
and exploitation.

* QOutperforms several Col-based reasoning methods.

* In some cases, surpasses even GPT-4 on challenging reasoning tasks




RL Planning and Al Planning: A
Primer and Survey (Preliminary
Report)

Frist Half: Swakshar Deb (swd9tc)



What is Planning?

 Planning is a sequence of actions (a,, a,, ..., a,) that lead us to the desired goal.

R. Epstein, C. E. Kirshnit, R. P. Lanza & L. C. Rubin, Insight’in the pigeon: antecedents and determinants of an intelligent performance, Nature, 1984

31
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Why Planning is Important?

Dog Pace

1) To handle complex task

Reference Real Robot Real Robot
(Before Adaptation) (After Adaptation)
Dog Spin

\-\

— P /" .\
. l o Reference Real Robot Real Robot
ﬂms__——-“ ‘;ﬁ—"f-.‘ o~

2) Can provide fine grained
motor skills

(Before Adaptation) (After Adaptation)
Wu etal., Discrete Policy: Learning Disentangled Action Peng et al., Learning Agile Robotic Locomotion Skills
Space for Multi-Task Robotic Manipulation, 2025 by Imitating Animals, 2020

@ Start ./ Robot Path
- ;

otal Distance: 2.73km

Checkpoints

100m

=

3) Planning should give the optimal path RNy i
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Classical Planning vs Reinforcement Learning (RL)

Repeated X times

| Selection - Expansion - Simulation — Backpropagation

1) Classical Planning: ._ 5 I __
tree search-based planning 2 :
{ :
e.g., A* search, Greedy best

first search, Monte Carlo search etc

=0

Monte Carlo Tree Search o somcnaser e

. ; ] Agent N, o\%/” i
2) Reinforcement Learning based Planning ziie i |l Y
Dynamics Model ,
. arg Ig(’ﬁ( Z r(s¢, )
3) Al Planner (logic based) Control nd Planming 9"

you
f@
olslote
oo

Reasoning via Planning (RAP)
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Planning and Representations: State

» State refers to the current situation or configuration that an agent perceives in its environment.

ey -

Shah et. al., Rapid Exploration for Open-World Navigation with Latent Goal Models, CoRL, 2021

34



(2) RL Planning: Trajectory Transformer

Trajectory transformer: fit transformer to high probability trajectory that has higher reward.

Step 1: Trajectory Modelling initial trajectory:

OOOOOO St at at OOO( ][ ][stﬂjooo T:(51131,7‘1152,212,?“2,...,ST,aT,rT).

[ Trajectory Transformer J

ror T - tokenized trajectory:
ooo[s%][sgj[sgjow[Sév][a%][a%][a?]moOOO T:(...,S%jS?,...,SiV,atl,a?,.. a,iw’ t,_..) tzl,,T

every dimension of every state s, action a', reward r; is a token

Step 2: Planning

T M
Z (Zlong et | 857, T<t) +Zlong | a7 s, T<t) +log Py(re | ag, sy, T<t))

t=1 i=1 J=1

Learn the high probability trajectory

35
Janner et al., Offline Reinforcement Learning as One Big Sequence Modeling Problem, Neurips, 2021



Demonstration in the Simulated Environment

36



RL Planning: QT-OPT

-

>

stored data from all
past experiments

{(si,i,s;)}i

Kalashnikov et al., QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation, 2018

live data collection

(

training buffers

\

off-policy (s, a,s’,r)

on-policy (s,a,s’,r)

labeled (s,a, Qr(s,a))

- Bellman updaters \

compute Qr(s,a) =

r + maxy Qp(s’,a’)

.

\

This slide is taken from https://www.youtube.com/watch?v=5Tdndu275AY &t=1202s

min||Qo s, )

training threads

= QT(Sa a)“2



https://www.youtube.com/watch?v=5Tdndu275AY&t=1202s

Does it works?

Method Dataset Test
QT-Opt (ours) 580k off-policy 4 28k on-policy 96 %
Levine et al. [27] | 900k grasps from Levine et al. [27] | 78%
QT-Opt (ours) 580k off-policy grasps only 87%
Levine et al. [27] | 400k grasps from our dataset 67%

38



VING: Learning Open-World Navigation with Visual Goals

Final Observation Directed Goal
Observation

Novel Aerial View Initial ‘Waypoint
Observation Observations

Environments

I > J ‘ \:’L/\ barracks

distance

industrial

- action
park

tall grass

start observation

A

|
( B nextgoal [l inspected )

Landmarks

topological map
plan through map
path actually taken

Dhruv Shah, Benjamin Eysenbach, Gregory Kahn, Nicholas Rhinehart, Sergey Levine, VING: Learning Open-World Navigation with Visual Goals, Neurips, 2021
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Real World demonstration of VING

Demo: Contactless Pizza Delivery

Delivery Location - IN Progress
(Image}

B successful

Demo: Contactless Pizza Delivery

Delivery Location B inprogress
(Image}

B successful
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COG: Connecting New Skills to Past Experience with Offline
Reinforcement Learning

RL policies typically do no generalize well to Can we use previously collected, unlabeled data
initial condition that is not seen during training to extend the learned skill?
Dynamics

R

Bellman
Backup

¢ )

Dynamics

—

-
Bellman

Backup ‘
—

reward = 0 reward = 1

Training data

Training time New initial condition Prior Data

Singh et al., COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning, CoRL, 2020 41



Problem Setup

Dynamics
E—
G

Bellman
Backup

Dynamics

-

Bellman
Backup

reward = 0

reward = 1

]

Fa—

reward = 1

it Training data
« Reward=0 . Sparse 0, 1 reward

Propagate the learned
* Q values to prior data

Learn Q function in the
training dataset

Task data

P

Task-specific data
Sparse rewards

rior data

No rewards

* No interaction with task

object

* Contains data irrelevant

to downstream task

Policy
Solves task T’
Generalizes to
conditions unseen
in task data

. iy
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Real World

Evaluation of CoG

Real World Evaluation

43



(3) Al Planning, logic based

Example of logic based state representation: used for multiple objects

{in(dog,bedroom), hungry(dog), brown(dog),
dirty(bedroom), likes(dog,bedroom),

can_make(dog, sandwich), in(bed, bedroom)}.

44



AP Representations: State

Object: Constant symbols representing entities (e.g., dog, bedroom).

Predicate: A logical statement that represent relationships or properties between objects.

Grounding: Assigning objects to predicate arguments to form propositions.

in(dog, bedroom) — Means the dog is in the bedroom

A state is a set of propositions representing all predicates.

State = {in(dog, bedroom), hungry(dog), brown(dog), dirty(bedroom), likes(dog, bedroom), can_make(dog, sandwich), in(bed, bedroom)}

45



AP Representations: Action Schema

» A planning action is represented as a tuple:
action schema =(arg(a), pre(a), add(a), del(a))

« Components:

«arg(a): Arguments for the action.
pre(a): Preconditions that must be true for execution.
«add(a): Positive effects (predicates that become true after executing the action).

«del(a): Negative effects (predicates that become false after executing the action).

46



Continue...

« Syntax: action schema = (arg(a), pre(a), add(a), del(a))
« Example:

Action schema = {r\nove(dog, bedroom, kitchen), i\n(dog, bedroom),

Arg(a) Pre(a)

in(dog, kitchen), in(dog, bedroom)}
\ ] |\ J
| |
Add(a) Del(a)

47



Benefits of Structure: Attention

» AP represents states as databases of facts, enabling queries for transitions and goal determination

 Actions only affect relevant facts, leaving irrelevant details unchanged.
« Example:

State = { , hungry(dog), brown(dog), dirty(bedroom), likes(dog, bedroom), can_make(dog, sandwich), in(bed, bedroom)}

Action: Move(dog, bedroom, kitchen)

New state ={in(dog, kitchen),hungry(dog),brown(dog) dirty(bedroom),likes(dog, bedroom),can_make(dog, sandwich),in(bed, bedroom)}

48



Benefits of Structure: Automation

» AP can be viewed as a declarative programming paradigm where problems are specified as a program in a
planning language

» Do not have to write a solver for a problem and only a model of the problem.
« Examples: A* search, Greedy Best First Search, Monte Carlo Tree Search.

49



Planning Extensions: Uncertainty

* Probabilistic planning: Allowing for probabilistic Transition model:

transitions. 3 +1 -

» Nondeterministic planning: Probabilities for

transitions are not given or unknown. 0.1 0.1
: : : 2 -1
« Conformant planning: Computing plans in
partially observable environments
1 START

R(s) = -0.04 for every
non-terminal state

50



Planning Extensions: Time and Numerics

« Numeric Planning introduces functions and numeric expressions, allowing the representation of numeric
state variables capturing e.g. resources, physical properties, and plan metrics.

HasBattery(robot_A) = 80% HasBattery(robot_A) = True/False

\ J
Y \ Y J

Numeric function Predicate

. Temporal Planning extends the defnition of actions and plans to allow for durative and concurrent actions, as well
as deadlines and temporal synchronisation.

51



Solving Planning Task: Heuristic Functions

h=4.12
« Functions that estimate the cost from a given state - =
to the goal. (2.5)

» Helps guide search algorithms like A* and Greedy
Best-First Search. .00

« Examples: Manhattan Distance, Euclidean Start—— o3 Lol
distance, Number of misplaced tiles (used in
(0,4) 4,4) . (6, 4)
puzzles) /

h=4.12 h(Statel) =V (6 —2)? + (4 — 3)?
o =V16+1
State'1 =4.12

e h=0.00
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Solving Planning Task: A* Algorithm

» Select the node with lowest

f(n) = g(n) + h(n)

Where, g(n) is cost of node n from the start and h(n) is mis s
the heuristic value of node n " T

g(C)=g(A) +4

1 =6 pal
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Problem Decomposition: Subgoals

» Subgoals as Decomposition: They break down complex tasks into intermediate goals

« Landmarking in Planning: Represent essential actions or state required for the solution

A B C D E F G H
)
1 e g
B I
J'\..']'\. '\..';' i "]"'
5 Basafass v L
7 . I
e ) 2209 A
sood |
3 i
Lan A
P
4 S 222
\ a4 A
5 —1> 1> T T

Fig: ‘s’ is the start state, ‘g’ is the goal state and « IS the subgoals



Problem Decomposition: Factored Planning

Factored Planning in Al

» Decomposes large planning problems into smaller, Final Solution
independent subproblems. / T~
« Each subproblem is solved separately and then / Yy
combined for the final solution. R S
« Allows parallel solving of independent factors by X o
multiple robots. \ \
\\ Subproblem B
\\ //'
///
SubproblemJ\\I\ e
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Problem Decomposition: Symmetries

» A form of problem decomposition that involves collapsing equivalent subproblems to generate an easier task

to solve

 Improves efficiency by avoiding duplicate exploration of symmetrical paths.

Al Planning Without Symmetry Reduction

Goal

o« ~
/ ~_
/ ~
/ T,
/ State 4
/
‘\\
-
State 3 RN
\\
.
X DN
\ \\\
\ N
\ ™
\ State 2
\ -
\y //,
.’//
Statel . -

~ Tnitial State

Al Planning With Symmetry Reduction

smtep) State B = {state 3, state 4}
AN

AN

\sm State A = {state 1, state 2}

—
Initial State
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Second Half of the Paper Al Planning: A
Primer and Survey(Preliminary Report)

Presented By : Md. Mahir Ashhab (ftm2nu)



Generalization in Planning

What is Generalization?

* The ability of Al planners to solve unseen problems by
leveraging prior knowledge.

 planning approaches define task-specific rules that transfer
across domains.

* Different from RL, where generalization is often tied to reward
learning,
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Formal Definition of Generalization In
Planning

Problem Tuple: (D, T_train, . 5 .2 _ .
T test = . m

D: Adomain

T _train: Training tasks i Ak :
T test: Unseen test tasks . P S L — y

. . . train = (esl train s1ze = (est S1z¢ train s1ze C lest s1ze
Learning involves constructing
Generalized Planning Figure 1: Generalisation setups for decision-making. AP ap-

. proaches incorporating learning often handle the most gen-
KnO.WIedge (GPK) for efficiently eral case (right) involving arbitrarily large test problems.
solving T_test.
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Learning Structure and from Structure

* Modern approaches integrate learning methods to automatically
infer structure.

* Different from classical Al planning, which relies on explicitly defined
state-transition models,

* Two key perspectives:

A. Learning structured representations from unstructured data (e.g., learning
symbolic planning models from raw state-action traces).

B. Leveraging structured planning knowledge to enhance learning efficiency
(e.g., using heuristic functions to guide learning).

* Key Question:
* How can Al planning methods be extended to handle complex, real-world tasks
where models are unknown or changing?
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A: Learning Planning Models - STRUCTURE

Goal: Convert raw state-action sequences into structured planning models (PDDL,
RDDL).

PDDL :

{in(dog,bedroom), hungry(dog), brown(dog),
dirty(bedroom),likes(dog,bedroom),

can_make(dog, sandwich), in(bed,bedroom)}.
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Types of Model Learning Approaches

1. From Passive state-action traces
*Extracting action models from state transitions
*Example: LOCM2, ARMS for deterministic planning

2. Learning from Passive Images/Videos traces

*Convert raw observations into planning models
*Example: Using GNNs and Transformer-based encoders

3. Active Model Learning (Exploratory Learning)
sIncrementally refining models based on agent interactions
*Example: Incremental Learning Model (ILM)
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Neuro-Symbolic Learning of Lifted Action
Models from Visual Traces

Definition 1 A Probabilistic Action Model (PAM) is defined

s
:  Randomly - — >
| Gaussan | o1 | G ST as a tuple of three functions (pre, add, del), where for an
i [I:I;VD]]] - pre,, action schema a(Z) and a predicate p(y) relevant to a(%),
' | ea — — — — —
. g I =) pre(a(Z), p(¥)), add(a(Z),p(y)), and del(a(Z), p(y)) are
> G"’;gg'“g e T =N s probabilities of p(ﬂlbeing a precondition, an add effect, or
: | add, [ a delete effect of a(T).
: a‘(iiﬁ.t
> [n*]——)%
ela |
o
Relevant Indices o]
del,,

Figure 3: ROSAME architecture. The projection operation
7 maps the output of the PAM network to relevant indices in
vectors of length | P;|. Indices not mapped take value zero.
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Neuro-Symbolic Learning of Lifted Action
Models from Visual Traces

Next State o e s
5
Inference T | T L L] ps; T T L L] pss [ [ | PSp4a
~ ,II-_-'.-":'-': ——
—» ROSAME > ROSAME » ROSAME
A A 'y

Current State | | g | [ 1 ps

Prediction I A L] Psy r Pea nen A~ !

CV model CV model CV model

Visual
Trace Il a] IE az If.rl. Gq Sn+1
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Asking the Right Questions: Learning Interpretable
Action Models Through Query Answering

Preferences on
Interpretability Query ' f
>| Agent-Assessment > ¥
\)/ < Module <« &

Interpretable Response \.
model of Al system'’s
Y Black-Box

capabilities
viser 3 Al System
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Asking the Right Questions: Learning Interpretable
Action Models Through Query Answering

Algorithm 1 Agent Interrogation Algorithm (AIA)

1. Input: A, Ay, P*,S

2: Output: poss_models

3: Initialize poss_models = {o}

4: for ~ in some input pal ordering I do
5:  new_models < poss_models

6:  pruned_models= {}
7.
8

for each M’ in new_models do
for each pair {i, 7} in {4, —,0} do

9: Q, M;, M, + generate_query(M’, i, 7,7, S)
10: M prune <filter_models(Q, MA M;, M 5)
11 pruned_models<— pruned_models U M yne
12: end for
13:  end for
14:  if pruned_models is () then
15: update_pal_ordering(1', S)

16: continue
17:  end if

18:  poss_models < new_models x {y*,v~, 1,-?1} \
pruned_models
19: end for




B: Learning for Planning (L4P)

L4P focuses on enhancing Al planners using machine learning techniques.

Key Techniques:

1. Graph Learning for Heuristic Search
*Using Graph Neural Networks (GNNSs) to learn heuristic functions.
*Example: Toyer et al. (2018) — ASNets

2. Automatically Generating Reward Functions
*Reward function learning via planning abstractions.
*Example: RL approaches integrating symbolic knowledge.
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Low cost Reasoning: On the Self-Verification Limitations
of Large Language Models on Reasoning and Planning
Tasks

Game
of 24
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Self-Critiquing System
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Froposes Bockprompts
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Automatic reward functions and labels:
ASNets

Action Proposition  Action Proposition  Action
layer 1 layer 1 layer 2 layer L  layer L + 1

e \. e—— e e ' I

Input
features

Figure 2: High-level overview of an ASNet. Each coloured rectangle represents an action
module (red) or a proposition module (blue); these modules apply learnt trans-
formations to input feature vectors in order to produce more expressive output
feature vectors. Information flows from the input (left) to the output (right) along
the black lines connecting modules in successive layers. For the sake of visual clar-
ity, skip connections (described in the main text) are not depicted. Modules are
grouped into L proposition layers and L + 1 action layers. Throughout, we refer
to such a network as an “L-layer ASNet”.
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Automatically Generate supervised Training Labels from
Training Tasks with Domain Independent Planners
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Generalized Planning (GP)

Objective
* Learn reusable policies for multiple planning tasks.

Challenges:
« Scalabillity to large state spaces
 Verifying correctness of learned policies

Solution Approaches:
1. Program Synthesis-Based GP
2. Graph-Based GP
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Directed Search for Generalized Plans Using
Classical Planners

Geft unsolved instance

Gen Plan w/ Open Node L Unsolved
Branches and Loops Abstract Structure

1
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4 \ Get FOl Spec :
: :
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c [ I
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_ ' Planner
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Generalized Q-Function in RL problems

F

s !

) Relational
Abstraction

Network Architecture
3 RelLU activated, fully connected layers
with 64 neurons each

.

4 I
—>» 5
= = = - —
—}E—}E—}E—)‘QGRL(S,M
—>» a

J

Convert the concrete state § and action g to abstract
state 8§ and action a vectors using abstraction
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Key Takeaways from the Survey

Al Planning Is evolving to incorporate learning-based

techniques.
«Structure reduces complexity in decision-making.
*Bridging Al Planning and RL is crucial for next-gen Al

applications.
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Challenges and Future Directions

Scalability
How to handle large, real-world dynamic environments?

Generalization
« How to efficiently transfer learned models?

Integration with Generative Al
How can foundation models help automate planning knowledge?

77



Final Thoughts and Open Questions

Al Planning iIs bridging traditional symbolic reasoning and

deep learning.
Learning-based planning is reshaping automation, robotics,

and real-world Al.

Open Discussion Question:
How can we create Al planners that learn and adapt like humans?
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Thank you
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