
Two papers: 

- Reasoning with Language Model is Planning 
with World Model 
- RL Planning and AI Planning: A Primer and 
Survey (Preliminary Report)
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Reasoning with Language Model 
is Planning with World Model 

Radowan Mahmud Redoy (snf4za)
Rishov Paul (vst2hb)
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Introduction to Problem

Creating action plans to move a block to a target state

success rate 1% 78% Success rate 

LLMs have remarkable reasoning capabilities with techniques such as
• CoT (chain-of-thought)

• Least-to-most prompting 
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Introduction to Problem

Exploring various 
alternative courses of 

actions

Assessing the likely 
outcomes by rolling out 

possible future scenarios

Iteratively refining the 
plan based on the 

assessment 
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To make an action plan towards a goal, planning involves following process

LLMs struggle with complex tasks that require multiple steps of Math, Logical or 

Commonsense reasoning



Introduction to Problem

Lack of an internal world knowledge to simulate the state of the world 

Absence of a reward mechanism to assess and guide the reasoning towards the 
desired state 

Incapability of balancing exploration vs. exploitation to efficiently explore vast 
reasoning space.

key limitations of the current reasoning with LLMs, 
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Reasoning 
via Planning 
(RAP)

AUGMENTS THE LLM WITH A 
WORLD MODEL

REASONS WITH PRINCIPLED 
PLANNING

PRODUCE HIGH-REWARD 
REASONING TRACES AFTER 

EFFICIENT EXPLORATION 
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RAP (Approach)

Build the world model by repurposing the LLM with prompting

Introduce the rewards for assessing each state during reasoning 

Guided by the world model and rewards, plan with Monte Carlo Tree 
Search and explore reasoning space to find optimal reasoning traces

Finally, when multiple promising reasoning traces are acquired during 
planning, introduce an aggregation method
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World Model

A world model predicts the next state of the reasoning after applying an action to the current state

World State Action

Blocks World Configuration of blocks Moving a block (e.g., "pickup the 
orange block")

Math Reasoning Values of intermediate variables Subquestion that derives new 
values

Logical Reasoning Fact being focused on Choosing a rule for the next 
deduction

Example: NVIDIA Cosmos World Foundation Models A family of pretrained multimodal models 
that developers can use out-of-the-box for world generation and reasoning,
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Language Model as 
World Model

With the definition of state and action, the 
reasoning process can be described as a Markov 
decision process (MDP)

• Taking s0, the LLM generates an action space by 
sampling from its generative distribution at ∼ 
p(a|st, c), where c is a proper prompt . 

• Once an action is chosen, the world model then 
predicts the next state st+1 of the reasoning.  
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Action plan generation prompt
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Plan Generation: Task setup

• Environment: Blocksworld benchmark 
(Valmeekam et al., 2022)
• Goal: Rearrange blocks into target 

stacks.

• State Definition:
• Current orientation of blocks.

• Action Definition:
• 4 verbs: STACK, UNSTACK, PUT, 

PICKUP + objects.
• Valid actions generated based on 

current state & domain rules.
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Plan Generation: Task Setup

• State Transition:
• LLM predicts state changes after each action.
• State updated by adding/removing block conditions that are no longer true.

• Termination:
• Ends when goal conditions met or depth limit reached.

• Rewards:
• r1: LLM log-probability of action (intuitive, near-goal).
• r2: Heuristic reward based on goal conditions met.
• Super high reward when all goal conditions are satisfied.
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Next state prediction prompt
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Traditional 
Method vs 

RAP
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Case Study: Comparison of COT and RAP
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Planning with Monte Carlo Tree Search

Once equipped with the world model and rewards LLMs can 
reason with any planning algorithms. 

Monte Carlo Tree Search (MCTS)
A powerful planning algorithm that strategically explores 
the space of reasoning trees and strikes a proper 
balance between exploration and exploitation to find 
high-reward reasoning traces efficiently.
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Planning with Monte Carlo Tree Search
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Reward Design

• Log probability of the action as a reward
• Reflects the “in stinct” of LLMs as an agent

Likelihood of the action

• Draw multiple sample answers from the world model
• Use the proportion of the most frequent answer as the 

confidence.

Confidence of the state

• It's beneficial to allow the LLM to criticize itself with the 
question

• The reward evaluates LLM’s own estimation of the 
correctness of reasoning.

Self-evaluation by the LLM

• RAP also allows us to flexibly plugin other task-specific 
heuristics into the reward function. 

Task-specific heuristics
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Experiments and Results

Demonstrate the flexibility and effectiveness of our RAP framework by applying it to a wide range of 

problems
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Results of Plan Generation
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Math Reasoning: Task setup

• Dataset: 
• GSM8k - consists of grade school math word problems

• Input: Description + Final Question

• RAP decompose the final question into a sequence of 
smaller sub-questions

• State: Tracks the values of intermediate variables

• Action: incremental sub-question proposal about a 
unknown intermediate variable

• World Model Response: Answers sub-question & updates 
state with new intermediate value

• RAP reviews updated state to inform next sub-question
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Math Reasoning: reward process

• Reward (rt):
• Combines LLM self-evaluation & state confidence.
• rt = rₜ,₁^α * rₜ,₂^(1-α)
• encourages more relevant and useful sub-questions

• Q-Value: Considers future steps reward averages to optimize reasoning path
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RAP-Aggregation

• For problems, such as math 
reasoning where only the final 
answer is required, RAP could 
produce multiple traces and 
answers from different MCTS 
iterations, which will be aggregated 
to produce the final answer. 

Note that problems like plan generation or logical 
inference require a complete reasoning trace as 

output; thus, RAP Aggregation will not be applied.
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Math Reasoning: Results
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Logical Reasoning with RAP: Task Setup

• Dataset: PrOntoQA (Saparov & He, 2022)

• Objective:
• Verify if a hypothesis fact is true or false.
• Provide a step-by-step proof supporting the answer.

• Problem Setup:
• Input: Set of facts + logical rules.
• Output: Final answer (True/False) + logical proof.

• RAP Framework Setup:
• State: Current fact in focus
• Action: Select a rule from the fact set.
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Logical Reasoning: Process and Reward

Reasoning Process:
World Model: Executes one-hop 
reasoning (apply selected rule).

Produces new fact → updates 
state.

Reward Design:
Self-Evaluation: LLM scores the 
quality of reasoning steps.
Few-shot examples provided to 
LLM for better self-assessment.
Q-value Update:
• Uses average rewards of future 

steps (similar to GSM8k reward 
formulation).

Outcome:
Supports multi-step reasoning with 

detailed proof generation.
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Logical Reasoning: Results
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RAP (Overview)

Acquire the world 
model by repurposing 

the LLM itself with 
appropriate prompts

LLM strategically builds 
a reasoning tree by 

iteratively considering 
the most promising 
reasoning steps and 

using the world model 
to look ahead for future 

outcomes

The estimated future 
rewards are 

backpropagated to 
update the LLM’s 
beliefs about the 

current reasoning steps

RAP enables LLMs to strategically plan a coherent reasoning trace for solving a wide 
range of reasoning tasks.
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Conclusion
• RAP bridges the gap between human-like planning and LLM reasoning 

— setting a new benchmark for intelligent problem-solving

• Integrates Monte Carlo Tree Search (MCTS) to balance exploration 
and exploitation.

• Outperforms several CoT-based reasoning methods.

• In some cases, surpasses even GPT-4 on challenging reasoning tasks

29



RL Planning and AI Planning: A 
Primer and Survey (Preliminary 

Report)
Frist Half: Swakshar Deb (swd9tc)
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What is Planning?
Planning is a sequence of actions (a1, a2, …, an) that lead us to the desired goal. .

R. Epstein, C. E. Kirshnit, R. P. Lanza & L. C. Rubin,  Insight’ in the pigeon: antecedents and determinants of an intelligent performance, Nature, 1984
31
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Why Planning is Important?

1) To handle complex task 

2) Can provide fine grained

motor skills

Peng et al., Learning Agile Robotic Locomotion Skills 

by Imitating Animals, 2020

Wu et al., Discrete Policy: Learning Disentangled Action

 Space for Multi-Task Robotic Manipulation, 2025

3) Planning should give the optimal path
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Classical Planning vs Reinforcement Learning (RL) 

Monte Carlo Tree Search

1) Classical Planning: 

      tree search-based planning

e.g., A* search, Greedy best 

first search, Monte Carlo search etc

2) Reinforcement Learning based Planning
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Planning and Representations: State

Shah et. al., Rapid Exploration for Open-World Navigation with Latent Goal Models, CoRL, 2021

• State refers to the current situation or configuration that an agent perceives in its environment.
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(2) RL Planning: Trajectory Transformer

Step 1: Trajectory Modelling

Step 2: Planning 

initial trajectory:

tokenized trajectory: 

every dimension of every state si, action ai, reward ri is a token

Janner et al., Offline Reinforcement Learning as One Big Sequence Modeling Problem, Neurips, 2021

Trajectory transformer: fit transformer to high probability trajectory that has higher reward.
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Demonstration in the Simulated Environment
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RL Planning: QT-OPT

Kalashnikov et al., QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation, 2018

This slide is taken from  https://www.youtube.com/watch?v=5Tdndu275AY&t=1202s
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Does it works?
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ViNG: Learning Open-World Navigation with Visual Goals

Dhruv Shah, Benjamin Eysenbach, Gregory Kahn, Nicholas Rhinehart, Sergey Levine, ViNG: Learning Open-World Navigation with Visual Goals, Neurips, 2021 39



Real World demonstration of ViNG 
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COG: Connecting New Skills to Past Experience with Offline 
Reinforcement Learning

RL policies typically do no generalize well to 

initial condition that is not seen during training

Training time New initial condition

Can we use previously collected, unlabeled data 
to extend the learned skill?

Singh et al., COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning, CoRL, 2020 41



Problem Setup

Sparse 0, 1 reward.

Learn Q function in the 

training dataset
.

Reward = 0

Propagate the learned

Q values to prior data

.

.
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Real World Evaluation of CoG

Real World Evaluation
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(3) AI Planning, logic based

Example of logic based state representation: used for multiple objects
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AP Representations: State

• Object: Constant symbols representing entities (e.g., dog, bedroom).

• Predicate: A logical statement that represent relationships or properties between objects.

• Grounding: Assigning objects to predicate arguments to form propositions.

• A state is a set of propositions representing all predicates.

in(dog, bedroom) → Means the dog is in the bedroom

State = {in(dog, bedroom), hungry(dog), brown(dog), dirty(bedroom), likes(dog, bedroom), can_make(dog, sandwich), in(bed, bedroom)}
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AP Representations: Action Schema

• A planning action is represented as a tuple:

                    action schema =⟨arg(a), pre(a), add(a), del(a)⟩

• Components:
•arg(a): Arguments for the action.

•pre(a): Preconditions that must be true for execution.

•add(a): Positive effects (predicates that become true after executing the action).

•del(a): Negative effects (predicates that become false after executing the action).
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Continue…
• Syntax: action schema = ⟨arg(a), pre(a), add(a), del(a)⟩

• Example:

Action schema = {move(dog, bedroom, kitchen), in(dog, bedroom), in(dog, kitchen), in(dog, bedroom)}

Arg(a) Pre(a) Add(a) Del(a)
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Benefits of Structure: Attention

• AP represents states as databases of facts, enabling queries for transitions and goal determination

• Actions only affect relevant facts, leaving irrelevant details unchanged.

• Example:

State = {in(dog, bedroom), hungry(dog), brown(dog), dirty(bedroom), likes(dog, bedroom), can_make(dog, sandwich), in(bed, bedroom)}

Action: Move(dog, bedroom, kitchen)

New state ={in(dog, kitchen),hungry(dog),brown(dog),dirty(bedroom),likes(dog, bedroom),can_make(dog, sandwich),in(bed, bedroom)}
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Benefits of Structure: Automation

• AP can be viewed as a declarative programming paradigm where problems are specified as a program  in a 
planning language

• Do not have to write a solver for a problem and only a model of the problem.

• Examples: A* search, Greedy Best First Search, Monte Carlo Tree Search.
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Planning Extensions: Uncertainty

• Probabilistic planning: Allowing for probabilistic 
transitions.

• Nondeterministic planning: Probabilities for  
transitions are not given or unknown.

• Conformant planning: Computing  plans in 
partially observable environments
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Planning Extensions: Time and Numerics

• Numeric Planning introduces functions and numeric  expressions, allowing the representation of numeric 
state  variables capturing e.g. resources, physical properties, and  plan metrics.

HasBattery(robot_A) = 80% HasBattery(robot_A) = True/False

Predicate
Numeric function

Temporal Planning extends the defnition of  actions and plans to allow for durative and concurrent actions, as well 

as deadlines and temporal synchronisation.
.
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Solving Planning Task: Heuristic Functions

• Functions that estimate the cost from a given state 
to the goal.

• Helps guide search algorithms like A* and Greedy 
Best-First Search.

• Examples: Manhattan Distance, Euclidean 
distance, Number of misplaced tiles (used in 
puzzles)
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Solving Planning Task: A* Algorithm

• Select the node with lowest

     f(n) = g(n) + h(n)

Where, g(n) is cost of node n from the start and h(n) is 
the heuristic value of node n

     
   

g(C)

53



Problem Decomposition: Subgoals

• Subgoals as Decomposition: They break down complex tasks into intermediate goals

• Landmarking in Planning: Represent essential actions or state required for the solution

Fig: ‘s’  is the start state, ‘g’ is the goal state and . is the subgoals  
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Problem Decomposition: Factored Planning

• Decomposes large planning problems into smaller, 
independent subproblems.

• Each subproblem is solved separately and then 
combined for the final solution.

• Allows parallel solving of independent factors by 
multiple robots.
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Problem Decomposition: Symmetries

• A form of problem  decomposition that involves collapsing equivalent subproblems to generate an easier task 
to solve

• Improves efficiency by avoiding duplicate exploration of symmetrical paths.

State B = {state 3, state 4} 

State A = {state 1, state 2}
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Second Half of the Paper AI Planning: A 
Primer and Survey(Preliminary Report)

Presented By : Md. Mahir Ashhab (ftm2nu)
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Generalization in Planning

What is Generalization?

• The ability of AI planners to solve unseen problems by 

leveraging prior knowledge.

• planning approaches define task-specific rules that transfer 

across domains.

• Different from RL, where generalization is often tied to reward 

learning, 
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Formal Definition of Generalization in 
Planning

59

Problem Tuple: ⟨D, T_train, 

T_test⟩
D: A domain

T_train: Training tasks

T_test: Unseen test tasks

Learning involves constructing 

Generalized Planning 

Knowledge (GPK) for efficiently 

solving T_test.



Learning Structure and from Structure

• Modern approaches integrate learning methods to automatically 
infer structure.

• Different from classical AI planning, which relies on explicitly defined 
state-transition models, 

• Two key perspectives:
A. Learning structured representations from unstructured data (e.g., learning 

symbolic planning models from raw state-action traces).
B. Leveraging structured planning knowledge to enhance learning efficiency 

(e.g., using heuristic functions to guide learning).

• Key Question:
• How can AI planning methods be extended to handle complex, real-world tasks 

where models are unknown or changing?
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A: Learning Planning Models - STRUCTURE

Goal: Convert raw state-action sequences into structured planning models (PDDL, 

RDDL).

PDDL : 
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Types of Model Learning Approaches

1. From Passive state-action traces

•Extracting action models from state transitions

•Example: LOCM2, ARMS for deterministic planning

2. Learning from Passive Images/Videos traces
•Convert raw observations into planning models
•Example: Using GNNs and Transformer-based encoders

3. Active Model Learning (Exploratory Learning)

•Incrementally refining models based on agent interactions

•Example: Incremental Learning Model (ILM)
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Neuro-Symbolic Learning of Lifted Action 
Models from Visual Traces
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Neuro-Symbolic Learning of Lifted Action 
Models from Visual Traces
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Neuro-Symbolic Learning of Lifted Action 
Models from Visual Traces
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Asking the Right Questions: Learning Interpretable 
Action Models Through Query Answering
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Asking the Right Questions: Learning Interpretable 
Action Models Through Query Answering
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B: Learning for Planning (L4P)

L4P focuses on enhancing AI planners using machine learning techniques.

Key Techniques:

1. Graph Learning for Heuristic Search

•Using Graph Neural Networks (GNNs) to learn heuristic functions.
•Example: Toyer et al. (2018) – ASNets

2. Automatically Generating Reward Functions

•Reward function learning via planning abstractions.

•Example: RL approaches integrating symbolic knowledge.
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Low cost Reasoning: On the Self-Verification Limitations 
of Large Language Models on Reasoning and Planning 
Tasks

70



Automatic reward functions and labels: 
ASNets
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Automatically Generate supervised Training Labels from 
Training Tasks with Domain Independent Planners
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Generalized Planning (GP)

Objective
• Learn reusable policies for multiple planning tasks.

Challenges:
• Scalability to large state spaces
• Verifying correctness of learned policies

Solution Approaches:
1. Program Synthesis-Based GP
2. Graph-Based GP
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Directed Search for Generalized Plans Using 
Classical Planners
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Generalized Q-Function in RL problems
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Key Takeaways from the Survey

•AI Planning is evolving to incorporate learning-based 

techniques.

•Structure reduces complexity in decision-making.

•Bridging AI Planning and RL is crucial for next-gen AI 

applications.
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Challenges and Future Directions

Scalability
•How to handle large, real-world dynamic environments?

Generalization
• How to efficiently transfer learned models?

Integration with Generative AI
•How can foundation models help automate planning knowledge?
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Final Thoughts and Open Questions

•AI Planning is bridging traditional symbolic reasoning and 

deep learning.

•Learning-based planning is reshaping automation, robotics, 

and real-world AI.

Open Discussion Question:
•How can we create AI planners that learn and adapt like humans?
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Thank you
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